If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-42x+5=0
a = 7; b = -42; c = +5;
Δ = b2-4ac
Δ = -422-4·7·5
Δ = 1624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1624}=\sqrt{4*406}=\sqrt{4}*\sqrt{406}=2\sqrt{406}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{406}}{2*7}=\frac{42-2\sqrt{406}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{406}}{2*7}=\frac{42+2\sqrt{406}}{14} $
| 2(4+x)=-16 | | _.375x=12 | | 4x+2-6x=6 | | .375x=12 | | B=68b+11 | | 2/5x-11=15 | | 4.4-x=5.6 | | 4x-4+2x=62 | | x^2-12=7x+6 | | B=65b+4+3b+7 | | 39=7x+2x+3 | | 144+13m=326 | | x+7-3x=9-8x+5x | | 9.734+x^2=24.01 | | 27n-108=378 | | 3x+75/x=36 | | -5(2x-3)=20 | | k=33×2+5 | | -1+5x+x=-55 | | -6y-1=27-1y | | 6+2x+x=33 | | 3x^2+13x-7408=0 | | -ww=-6 | | 35t^2-18-5=0 | | 3t^2-19-40=0 | | 0.709^n=0.88 | | 24=6x+3x+6 | | 3(4x-1)+9-x=2x+8+ | | 18.5y+11.6=22.7 | | -rr=8 | | 2/3x+4=11 | | -5=5x-2x-5 |